Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 395: 111026, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679115

RESUMEN

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.

2.
J Pharm Pharmacol ; 76(4): 368-380, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38330395

RESUMEN

OBJECTIVES: To evaluate whether the glycosylation of chrysin (CHR) enhances its protective effects against aluminum-induced neurotoxicity. METHODS: To compare the antioxidant, anticholinesterase, and behavioral effects of CHR with its glycosylated form (CHR bonded to ß-d-glucose tetraacetate, denoted as LQFM280), we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (aluminum-induced neurotoxicity in Swiss mice) models. KEY FINDINGS: LQFM280 demonstrated higher antioxidant activity than CHR in both models. Specifically, LQFM280 exhibited the ability to exert antioxidant effects in the cytoplasm of SH-SY5Y cells, indicating its competence in traversing neuronal membranes. Remarkably, LQFM280 proved more effective than CHR in recovering memory loss and counteracting neuronal death in the aluminum chloride mice model, suggesting its increased bioavailability at the brain level. CONCLUSIONS: The glycosylation of CHR with ß-d-glucose tetraacetate amplifies its neuroprotective effects, positioning LQFM280 as a promising lead compound for safeguarding against neurodegenerative processes involving oxidative stress.


Asunto(s)
Flavonoides , Neuroblastoma , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Ratones , Animales , Humanos , Aluminio/toxicidad , Glucosa/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Antioxidantes/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Línea Celular Tumoral
3.
Neurochem Res ; 49(1): 170-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684384

RESUMEN

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Antipsicóticos , Ketamina , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Receptores de N-Metil-D-Aspartato
4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834027

RESUMEN

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound's behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.


Asunto(s)
Antioxidantes , Morfolinas , Antioxidantes/química , Oxidación-Reducción , Ansiedad
5.
Inflammopharmacology ; 31(5): 2451-2465, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667090

RESUMEN

In the scope of a research program with the goal of developing treatments for inflammatory diseases, the pharmacological evaluation of LQFM291, designed by molecular hybridization from butylated hydroxytoluene and paracetamol, was described. The antioxidant profile of LQFM291 was evaluated by electrochemical measurement. Also, acute or repeated treatments with equimolar doses to paracetamol were used to evaluate the antinociceptive and/or anti-inflammatory activities of LQFM291 in animal models. The toxicologic potential of LQFM291 was also evaluated and compared to paracetamol through biochemical and histopathological analysis after the repeated treatment schedule. As a result of the acute treatment, paracetamol showed a similar antinociceptive effect in formalin test compared to LQFM291. Whereas, after the repeated treatment, when carrageenan-induced hyperalgesia and edema tests were performed, paracetamol showed a delayed antinociceptive and anti-inflammatory effect compared to LQFM291. Furthermore, as other advantages the LQFM291 showed a high redox capacity, a gastroprotective activity and a safety pharmacological profile without any liver or kidney damage. These effects can be related to the prevention of oxidative stress by reduction of protein and lipid peroxidation in gastric tissue, maintenance of glutathione levels in hepatic homogenate, and a systemic reduction of pro-inflammatory cytokine levels, which may characterize the LQFM291 as a more viable and effective alternative to relief pain and inflammatory signs in patients with chronic disorders.


Asunto(s)
Acetaminofén , Antiinflamatorios , Animales , Humanos , Acetaminofén/efectos adversos , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Carragenina , Extractos Vegetales/farmacología , Analgésicos/efectos adversos , Edema/inducido químicamente , Edema/tratamiento farmacológico
6.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37513842

RESUMEN

The LQFM05 is a prototype drug designed for treatment of psychiatric disorders, such as schizophrenia, exhibiting anxiolytic- and antidepressant-like (12 or 24 µmol/kg) effects in classical behavioral tests. In order to evaluate its pharmacokinetic properties, a liquid chromatography method coupled to a quadrupole time of flight mass spectrometry system (LC-QTOF/MS) was developed and fully validated for LQFM05 analysis in rat plasma and tissue samples (brain, heart, liver, and kidneys). Liquid-liquid extraction, solid phase extraction and protein precipitation were assessed as clean-up procedures for biological samples and analyte enrichment. Plasma and tissue samples underwent protein precipitation as a preliminary step, using acetonitrile. Linearity was fully demonstrated for the dynamic range (10.0 to 900.0 ng/mL), with r2 values higher than 0.99 (RSDslope ≤ 2%, Fcal < Ftab, Ccal < Ctab). Biodistribution studies in rats revealed high brain tissue concentrations (12.4 µg/g), suggesting elevated drug affinity to the main therapeutic target tissue, showing a blood partition coefficient of 1.9. Kidneys also showed great exposure and tissue affinity, suggesting a potential extrahepatic clearance. Likewise, all examined tissues exhibited satisfactory LQFMF05 distribution. The mass fragmentation spectrum indicated the presence of its main metabolite, LQFM235, yielded by high hepatic hydroxylation route, an equally bioactive derivative. Lastly, the developed LC-QTOF/MS method was shown to be sensitive (LOQ = 10 ng/mL), precise and accurate for LQFM05 determination in tissue homogenates and plasma samples.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37068313

RESUMEN

LQFM018 is a novel antineoplastic prototype, showing an expressive drug-triggered K562 leukemic cells death mechanism, through necroptotic signaling. Due to its promising effect, this study aimed to evaluate the pharmacokinetics of LQFM018 in rats, using a new validated bioanalytical LC-MS/MS-based method. Chromatographic column was an ACE® C18 (100 mm × 4.6 mm, 5 µm) eluted by a mobile phase composed of ammonium acetate 2 mM and formic acid 0.025%:methanol (50:50, v/v), under flow of 1.2 mL/min and injection volume of 3.0 µL. LQFM018 was extracted from rat plasma by a simple liquid-liquid method, using MTBE solvent. Rats were administered intraperitoneally at LQFM018 100 mg/kg dose and blood samples were collect at times of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 h. Bioanalytical-LC-MS/MS-based method was rapid, high throughput and sensitive with a good linearity ranging from 10 (LLOQ) to 15000 ng/mL, besides precise and accurate, ranging of 0.8-7.3% and 96.8-107.6%, respectively. The prototype LQFM018 was rapid and well absorbed, and highly distributed, apparently due to its high lipid solubility. These features are primordial for an anticancer agent in the treatment of deep tumors, such as bone marrow neoplasms, in which the drug might permeate easily tissue barriers. Also, LQFM018 has demonstrated a high clearance, according to a low t1/2in rats, indicating a relative fast elimination phase related to a possible intense hepatic biotransformation. These information support further studies to establish new understands on pharmacokinetics of promising antineoplastic prototype LQFM018 from preclinical and clinical evaluations.


Asunto(s)
Antineoplásicos , Espectrometría de Masas en Tándem , Ratas , Animales , Cromatografía Liquida/métodos , Piperazina , Espectrometría de Masas en Tándem/métodos , Piperazinas , Reproducibilidad de los Resultados
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2957-2975, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097335

RESUMEN

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Ansiedad/tratamiento farmacológico , Morfolinas/farmacología , Conducta Animal
9.
Can J Physiol Pharmacol ; 101(5): 216-225, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36866837

RESUMEN

Molecular modification of compounds remains important strategy towards the discovery of new drugs. In this sense, this study presents a new pyrazole derivative 5-(1-(2-fluorophenyl)-1H-pyrazol-4-yl)-1H-tetrazole (LQFM039) and evaluated the anti-inflammatory, analgesic, and vasorelaxant effects of this compound as well the mechanisms of action involved in the pharmacological effects. For this, mice were orally treated with LQFM039 (17.5, 35, or 70 mg/kg) prior acetic acid-induced abdominal writhing, formalin, tail flick, and carrageenan-induced paw edema protocols. In addition, vascular reactivity protocols were made with aortic rings contraction with phenylephrine and stimulated with graded concentrations of LQFM039. Abdominal writhing and licking time in both neurogenic and inflammatory phases of formalin were reduced with LQFM039 without altering latency to nociceptive response in the tail flick test. Carrageenan-induced paw edema showed that LQFM039 reduces edema and cell migration. In addition, the mechanism of action of LQFM039 involves NO/cGMP pathway and calcium channels, since this new pyrazole derivate elicited concentration-dependent relaxation attenuated by Nω-nitro-l-arginine methyl ester and 1H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one, and blockade of CaCl2-induced contraction. Altogether, our finding suggests anti-inflammatory, antinociceptive, and vasorelaxant effect of this new pyrazole derivative with involvement of NO/cGMP pathway and calcium channels.


Asunto(s)
Analgésicos , Vasodilatadores , Ratones , Animales , Analgésicos/farmacología , Canales de Calcio/efectos adversos , Canales de Calcio/metabolismo , Carragenina/efectos adversos , Antiinflamatorios/farmacología , Pirazoles/farmacología , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Antiinflamatorios no Esteroideos/efectos adversos , Formaldehído
10.
Pharmacol Rep ; 75(2): 276-292, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719635

RESUMEN

BACKGROUND: L-proline transporter (PROT/SLC6A7) is closely associated with glutamatergic neurotransmission, where L-proline modulates the NMDA receptor (NMDAR) function. NMDAR-mediated excitotoxicity is a primary cause of neuronal death following stroke, which is triggered by the uncontrolled release of glutamate during the ischemic process. After ischemic stroke, L-proline levels show a reduction in the plasma, but high circulating levels of this molecule indicate good functional recovery. This work aimed to produce new PROT inhibitors and explore their effects on ischemic stroke. METHODS: Initially, we built a three-dimensional model of the PROT protein and run a molecular docking with the newly designed compounds (LQFM215, LQFM216, and LQFM217). Then, we synthesized new PROT inhibitors by molecular hybridization, and proline uptake was measured in ex vivo and in vivo models. The behavioral characterization of the treated mice was performed by the open-field test, elevated plus-maze, Y-maze, and forced swimming test. We used the permanent middle cerebral artery occlusion (MCAO) model to study the ischemic stroke damage and analyzed the motor impairment with limb clasping or cylinder tests. RESULTS: LQFM215 inhibited proline uptake in hippocampal synaptosomes, and the LQFM215 treatment reduced proline levels in the mouse hippocampus. LQFM215 reduced the locomotor and exploratory activity in mice and did not show any anxiety-related or working memory impairments. In the MCAO model, LQFM215 pre-treatment and treatment reduced the infarcted area and reduced motor impairments in the cylinder test and limb clasping. CONCLUSIONS: This dataset suggests that the new compounds inhibit cerebral L-proline uptake and that LQFM215 promotes neuroprotection and neuro-repair in the acute ischemic stroke model.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratones , Animales , Accidente Cerebrovascular Isquémico/complicaciones , Neuroprotección , Simulación del Acoplamiento Molecular , Infarto de la Arteria Cerebral Media/complicaciones , Receptores de N-Metil-D-Aspartato , Prolina/farmacología , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad
11.
Life Sci ; 312: 121199, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402170

RESUMEN

AIMS: Oxidative stress, impaired antioxidant defense and neuroinflammation are often associated with the onset and progression of neuropsychiatric diseases. Conversely, several piperazine compounds presents beneficial neuropharmacological effects as well as antioxidant activity, and some derivatives combine both activities. LQFM212 (2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol) was synthesized to produce effects on CNS and to have an additional antioxidant effect. Previous preclinical tests have been shown anxiolytic- and antidepressant-like effects of LQFM212 in mice. Herein, the main objective was to verify the possible antioxidant potential and the effects of LQFM212 against behavioral changes, inflammatory and oxidative markers induced by lipopolysaccharide (LPS). MAIN METHODS: Initially, antioxidant potential of LQFM212 was evaluated by electrochemical assays. Afterwards, the effects of oral treatment with LQFM212 were evaluated in mice using LPS-induced models of systemic or local inflammation. KEY FINDINGS: In LPS-induced neuroinflammation, LQFM212 treatment reverted changes caused by LPS, demonstrated by attenuated anxiogenic- and depressive-like behaviors, reduced pro-inflammatory cytokines (TNF-α and IL-1ß) and increased anti-inflammatory cytokines (IL-4 and IL-10) on serum, and also improved oxidative stress-related changes (levels of nitrite, malondialdehyde, glutathione and carbonylated protein, and superoxide dismutase, catalase, myeloperoxidase and cholinesterase activities) on brain cortex and hippocampus. However, LQFM212 treatment did not attenuate the inflammatory changes in LPS-induced pleurisy model. SIGNIFICANCE: LQFM212 presents antioxidant activity and ameliorates behavioral, inflammatory and oxidative changes after LPS-induced neuroinflammation model. These effects do not seem to be secondary to a peripheral anti-inflammatory action of LQFM212, since this compound failed to attenuate the inflammatory changes in LPS-induced pleurisy model.


Asunto(s)
Lipopolisacáridos , Pleuresia , Ratones , Animales , Lipopolisacáridos/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Citocinas/metabolismo
12.
Inflammopharmacology ; 31(1): 411-422, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36443517

RESUMEN

Advances have been made in the search for new multi-target modulators to control pain and inflammation. Therefore, compound 3,5-di-tert-butyl-4-hydroxyphenyl)(4-methylpiperazin-1-yl)methanone (LQFM202) was synthesised and evaluated. First, in vitro assays were performed for COX-1, COX-2, and 5-LOX enzymes. Subsequently, adult female Swiss albino mice treated orally with LQFM202 at doses of 25-200 mg/kg were subjected to acetic acid-induced writhing, formalin-induced pain, carrageenan-induced hyperalgesia, carrageenan- or zymosan-induced paw oedema, or pleurisy. LQFM202 inhibited COX-1, COX-2, and LOX-5 (IC50 = 3499 µM, 1565 µM, and 1343 µM, respectively). In acute animal models, LQFM202 (50, 100, or 200 mg/kg) decreased the amount of abdominal writhing (29%, 52% and 48%, respectively). Pain in the second phase of the formalin test was reduced by 46% with intermediate dose. LQFM202 (100 mg/kg) reduced the difference in nociceptive threshold in all 4 h evaluated (46%, 37%, 30%, and 26%, respectively). LQFM202 (50 mg/kg) decreased the carrageenan-oedema from the second hour (27%, 31% and 25%, respectively); however, LQFM202 (100 mg/kg) decreased the carrageenan-oedema in all hours evaluated (35%, 42%, 48% and 50%, respectively). When using zymosan, LQFM202 (50 mg/kg) decreased the oedema in all hours evaluated (33%, 32%, 31% and 20%, respectively). In the carrageenan-pleurisy test, LQFM202 (50 mg/kg) reduced significantly the number of polymorphonuclear cells (34%), the myeloperoxidase activity (53%), TNF-α levels (47%), and IL-1ß levels (58.8%). When using zymosan, LQFM202 (50 mg/kg) reduced the number of polymorphonuclear and mononuclear cells (54% and 79%, respectively); and the myeloperoxidase activity (46%). These results suggest antinociceptive and anti-inflammatory effects of LQFM202.


Asunto(s)
Analgésicos , Pleuresia , Animales , Ratones , Femenino , Analgésicos/farmacología , Carragenina/farmacología , Ciclooxigenasa 2 , Peroxidasa , Zimosan , Antiinflamatorios/farmacología , Dolor/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Pleuresia/tratamiento farmacológico , Piperazinas , Edema/tratamiento farmacológico , Extractos Vegetales/farmacología
13.
Can J Physiol Pharmacol ; 100(6): 521-533, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395172

RESUMEN

Anxiety and depression are common mental disorders affecting millions of people worldwide. Unsatisfactory clinical outcomes with the use of the available pharmacological interventions among some patients demand newer drugs with proven efficacy, safety, and tolerability profile. In this study, the LQFM211, LQFM213, and LQFM214 were designed from the piperazine scaffold and administered orally in mice. These mice were later evaluated in the open field, elevated plus maze, and forced swimming tests to assess the exploratory, anxiolytic, and antidepressant-like activities, respectively. The mechanism of action of these new derivatives was evaluated using flumazenil (benzodiazepine antagonist) and WAY100635 (5-HT1A receptor antagonist). Unlike LQFM214, the LQFM211 and LQFM213 elicited anxiolytic and antidepressant-like effects. The blockade of the effect of LQFM213 by WAY100635 suggests the involvement of the serotonergic pathway.


Asunto(s)
Ansiolíticos , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Humanos , Ratones , Piperazina/farmacología , Antagonistas de la Serotonina/farmacología , Antagonistas de la Serotonina/uso terapéutico , Relación Estructura-Actividad
14.
Behav Brain Res ; 417: 113582, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34536431

RESUMEN

The current treatments available for anxiety and depression are only palliative. Full remission has remained elusive, characterizing unmet medical needs. In the scope of an academic drug discovery program, we describe here the design, synthesis, in vitro metabolism prediction and pharmacological characterization of a new piperazine compound, 1-(4-methoxyphenyl)-4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazine (LQFM005), and of its main putative metabolite, 4-(4-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)- 1H-pyrazol-1-yl)phenol (LQFM235). The production of the metabolite was initially performed by in vitro biotransformation of LQFM005 using Aspergillus candidus and then by chemical synthesis. Oral administration of either 12 or 24 µmol/kg LQFM005 to mice did not affect spontaneous locomotor activity but increased the time spent in the center of the open field. Both LQFM005 and LQFM235 (24 µmol/kg) increased the time spent by the mice in the open arms of the elevated plus maze (EPM), a good indication of anxiolytic-like effect, and decreased the immobility time in the forced swimming test (FST), suggesting an antidepressant-like effect. The previous administration of WAY-100635 (a 5-HT1A antagonist) abolished the effects of LQFM005 in both EPM and FST. Binding experiments showed that LQFM005 and its metabolite bind to the 5-HT1A receptor with a moderate affinity (Ki around 5-9 µM). The two compounds are relatively safe, as indicated by cytotoxic assessment using the 3T3 fibroblast cell line and estimated LD50 around 600 mg/kg. In conclusion, oral administration of the newly synthesized phenylpiperazines produced anxiolytic- and antidepressant-like effects in behavioral tests, putatively in part through the activation of 5-HT1A receptors.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Piperazinas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Locomoción , Masculino , Ratones , Piperazinas/antagonistas & inhibidores , Piperazinas/metabolismo , Piridinas/antagonistas & inhibidores , Natación
15.
Toxicol In Vitro ; 79: 105294, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34896601

RESUMEN

4-hydroxy-2-nonenal (HNE) is a reactive aldehyde produced by cells under conditions of oxidative stress, which has been shown to react with proteins and phosphatidylethanolamine in biological membranes. Using electron paramagnetic resonance (EPR) spectroscopy of a spin label it was demonstrated that 2 h of treatment with HNE causes membrane rigidity in promastigotes of Leishmania (L.) amazonensis, J774.A1 macrophages and erythrocytes. Remarkable fluidity-reducing effects on the parasite membrane were observed at HNE concentrations approximately 4-fold lower than in the case of erythrocyte and macrophage membranes. Autofluorescence of the parasites in PBS suspension (1 × 107 cell/mL) with excitation at 354 nm showed a linear increase of intensity in the range of 400 to 600 nm over 3 h after treatment with 30 µM HNE. Parasite ghosts prepared after this period of HNE treatment showed a high degree of membrane rigidity. Bovine serum albumin (BSA) in PBS treated with HNE for 2 h showed an increase in molecular dynamics and suffered a decrease in its ability to bind a lipid probe. In addition, the antiproliferative activity of L. amazonensis promastigotes, macrophage cytotoxicity and hemolytic potential were assessed for HNE. An IC50 of 24 µM was found, which was a concentration > 10 times lower than the cytotoxic and hemolytic concentrations of HNE. These results indicate that the action of HNE has high selectivity indices for the parasite as opposed to the macrophage and erythrocyte.


Asunto(s)
Aldehídos/farmacología , Eritrocitos/efectos de los fármacos , Leishmania/efectos de los fármacos , Macrófagos/efectos de los fármacos , Aldehídos/toxicidad , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Fluidez de la Membrana/efectos de los fármacos , Ratones , Albúmina Sérica Bovina/efectos de los fármacos
16.
CNS Neurol Disord Drug Targets ; 21(6): 520-532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34781873

RESUMEN

BACKGROUND: Pharmacological treatments for mental disorders, such as anxiety and depression, present several limitations and adverse effects. Therefore, new pharmacotherapy with anxiolytic and antidepressant potential is necessary, and the study of compounds capable of interacting with more than one pharmacological target may provide new therapeutic options. OBJECTIVES: In this study, we proposed the design, synthesis of a new compound, 2-(4-((1- phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethyl acetate (LQFM192), pharmacological evaluation of its anxiolytic-like and antidepressant-like activities, as well as the possible mechanisms of action involved. METHODS: Administration of LQFM192 was carried out prior to the exposure of male Swiss mice to behavioral tests, such as the elevated plus-maze and forced swimming test. The involvement of the serotonergic system was studied by pretreatment with WAY-100635 or p-chlorophenylalanine (PCPA) and the involvement of the benzodiazepine site of the GABAA receptor by pretreatment with flumazenil. RESULTS: The treatment with LQFM192 at doses of 54 and 162 µmol/kg demonstrated anxiolyticlike activity that was blocked by WAY-100635, PCPA, and flumazenil pretreatments. The potential antidepressant-like activity was visualized at the same doses and blocked by WAY-100635 and PCPA. CONCLUSION: In summary, the anxiolytic-like activity of LQFM192 is mediated by the serotonergic system and the benzodiazepine site of the GABAA receptor, and the antidepressant-like activity through the serotonergic system.


Asunto(s)
Ansiolíticos , Acetatos , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Conducta Animal , Benzodiazepinas , Flumazenil/farmacología , Humanos , Masculino , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Receptores de GABA-A/metabolismo
17.
Curr Org Synth ; 18(8): 844-853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34886771

RESUMEN

BACKGROUND: Privileged scaffolds are of high importance for molecules containing the pyrazole subunit due to their broad spectrum of pharmacological activities. For this reason, a method that is more efficient needs to be developed for the preparation of pyrazole derivatives. OBJECTIVE: The purpose of this study was the optimisation of the conventional synthesis of the pyrazole ring and the oxidation of phenyl-1H-pyrazole-4-carbaldehyde to phenyl-1H-pyrazole-4-carboxylic acid through Microwave- Assisted Organic Synthesis (MAOS). METHODS: We performed a comparison between conventional synthesis and conventional synthesis with microwave heating using the synthesis method of pyrazole ring described by Finar and Godfrey and for the oxidation of phenyl-1H-pyrazole-4-carbaldehyde, the method described by Shriner and Kleiderer was used. RESULTS: MAOS reduces the reaction time to obtain all compounds compared to conventional heating. At a temperature of 60°C, 5 minutes of reaction time, and power of 50 W, the yield of phenyl-1H-pyrazoles (3a-m) compounds was in the range of 91 - 98% using MAOS, which is better than conventional heating (72 - 90%, 75ºC, 2 hours). An improvement in the yield for the oxidation reaction was also achieved with MAOS. The compounds (5a-m) were obtained with yields ranging from 62 - 92% (80ºC, 2 minutes, 150 W), while the yields with conventional heating were in the range of 48 - 85% (80ºC, 1 hour). The 26 compounds were achieved through an easy work-up procedure with no chromatographic separation. The pure products were characterised by the spectral data obtained from IR, MS, 1H and 13C NMR or HSQC/HMBC techniques. CONCLUSION: The advantages of MAOS include short reaction time and increased yield, due to which it is an attractive option for pyrazole compounds synthesis.


Asunto(s)
Microondas , Pirazoles , Ácidos Carboxílicos , Técnicas de Química Sintética
18.
Front Pharmacol ; 12: 666725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040529

RESUMEN

Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.

19.
Photochem Photobiol ; 97(2): 360-371, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33107602

RESUMEN

The use of sunscreen has become an indispensable daily routine since UV radiation is a critical environmental stress factors for human skin. This study focused on the design, synthesis, thermal/chemical stability and efficacy/safety evaluations of a new heterocyclic derivative, namely LQFM184, as a photoprotective agent. The compound showed stability when submitted under oxidative and high-temperature conditions. It also revealed an absorption at 260-340 nm (UVA/UVB), with a main band at 298 nm and a shoulder close to 334 nm. LQFM184 showed capacity to interact with other existing UV filters, promoting an increase in the sun protection factor. In relation to acute toxicity, its estimated LD50 was >300-2000 mg kg-1 , probably with a low potential of inducing acute oral systemic toxicity hazard. In addition, our data showed that this compound did not have eye irritation, skin sensitization or phototoxicity potentials. Taken together, these findings make LQFM184 a promising ingredient to be used, alone or in association with other UV filters, in cosmetic products such as sunscreens with a broad spectrum of protection.


Asunto(s)
Protectores Solares/química , Rayos Ultravioleta , Células 3T3 , Animales , Bovinos , Cosméticos/química , Humanos , Ratones , Ratones Endogámicos BALB C , Análisis Espectral/métodos , Protectores Solares/farmacología , Protectores Solares/toxicidad , Células U937
20.
Behav Brain Res ; 401: 113066, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333109

RESUMEN

Major depression disorder (MDD) is one of the most widespread and debilitating psychiatric diseases and may be associated with other mental disorders such as anxiety. Despite advances in neurobiology studies, currently no established mechanism can explain all facets of MDD, and available drugs often show therapeutic delay for clinical effectiveness and response rates in patients are around 50 %. Previous activities of piperazine derivatives on CNS are indicators of its therapeutic potential for treating mental disorders. In this regard, we have previously shown that the piperazine derivative 2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol (LQFM212) has anxiolytic-like activity which involves serotonergic pathway, nicotinic receptors and BZD-site of GABAA receptor, without cognitive impairments. Herein, was evaluated the potential antidepressant-like effect of LQFM212 on forced swimming test (FST) after a single dose of 54 µmol/kg and after repeated treatment for 15 days in mice. Pretreatment with WAY-100635, PCPA, prazosin, SCH-23390, sulpiride or AMPT reversed the antidepressant-like effect on FST, suggesting that monoaminergic pathway contributes for effects of LQFM212. Furthermore, repeated treatment with LQFM212 increased hippocampal BDNF levels dosed by ELISA kit. In assessment of possible adverse effects, repeated treatment with LQFM212 did not alter the body weight of the animals, glutathione levels in the liver, and serum levels of AST, ALT, urea, and creatinine. Taken together, the results showed that LQFM212 has an antidepressant-like effect that involves monoaminergic pathway and increased BDNF levels. This compound represents promising candidate for prototype of psychoactive drugs for treatment of anxiety and depression disorders since these pathological conditions may exist in comorbidities.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Monoaminas Biogénicas , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Neurotransmisores/farmacología , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antidepresivos/administración & dosificación , Antidepresivos/efectos adversos , Monoaminas Biogénicas/agonistas , Monoaminas Biogénicas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Masculino , Ratones , Neurotransmisores/administración & dosificación , Piperazinas/administración & dosificación , Piperazinas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...